INDIAN SCHOOL MUSCAT FINAL EXAMINATION 2022 MATHEMATICS BASIC (241)

CLASS:X Max.Marks: 80

	CLASS:X: MARKING SCHEME			
SET	QN.	VALUI	E POINTS	MARKS
		SET - A	SET - B	
	1	(c) 11th	$(c) \frac{13}{2}$	1
	2	(b) 2 points	(a) 22 cm	1
	3	(a) 60	(d) Assertion (A) is false but reason (R) is true.	1
	4	(a) $\frac{3}{26}$	(a) 7, 13	1
	5	(a) 3	c) $0 \le P(A) \le 1$	1
	6	(c) 12 cm	(b)5	1
	7	(c) 8 units	(b) 10th	1
	8	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).	(d) 4 cm	1
	9	c) $0 \le P(A) \le 1$	(b) 2 points	1
	10	(b) 5	(a) $\frac{3}{26}$	1
	11	(d) 2	(c) 8 units	1
	12	(b)5	(c) 12 cm	1
	13	(a) 22 cm	(c) 6 Units	1
	14	(a) 7, 13	(c) $\frac{1}{2}$	1
	15	(d) 4 cm	(c) Assertion (A) is true but reason (R) is false.	1
	16	(b)No solution	(d) 2	1
	17	(c) Assertion (A) is true but reason (R) is false.	(a) 50	1
	18	$(c)\frac{1}{2}$	(b)No solution	1

19	(c) 6 Units	(a) 3	1
20	$(c) \frac{13}{2}$	(b) 5	1
36	(i) $\frac{1}{26}$ (1) (ii) $\frac{1}{52}$ (1) (iii) $\frac{2}{13}$ OR $\frac{1}{13}$ (2)	(i)L(-1,3),Sk(3,0), Sc((4,3),H(4,5) (2) (ii) Pulkit Reaches School first. (2) (Use distance formula)	
37	(i)22 cm (1) (ii) 3n + 4 (1) (iii) 11 OR 2.05m (2) (Show working)	(i) $\frac{1}{13}$ (1) (ii) $\frac{1}{52}$ (1) (iii) $\frac{2}{13}$ OR $\frac{2}{13}$ (2)	
38	(i)L(-1,3),Sk(3,0), Sc((4,3),H(4,5) (2) (ii) Pulkit Reaches School first. (2) (Use distance formula) SET- A	(i)b) 25 cm (1) (ii) 3n + 4 (1) (iii) 12 OR 2.42m (Show working) (2)	
21	$\alpha \times \frac{1}{\alpha} = \frac{k}{3}$ Simplification $\Rightarrow k = 3$		1 1/2 1/2
22	Formula Substitution & Calculation Answer: 77 cm ²		1/2 1 1/2
23	Formula Substitution Calculation Answer: 181		1/2 1/2 1/2
24	$\frac{AD}{DB} = \frac{AE}{EC}$ DE BC $\Rightarrow \angle ADE = \angle ABC = 48^{\circ}$ $\frac{AD}{DB} = \frac{AE}{EC}$ $\frac{x}{x+1} = \frac{x+3}{x+5}$ Simplification $x=3$		1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
25	Formula Substitution		1/2 1/2 1

	2 10 . 21		1/
	Answer: $x^2 - 10x + 21$		1/2
	OR		1.1
	Both are zeros		1+1
26	A + B = 45	1	
	A - B = 30		1
	A = 37.5 & B = 7.5	$\frac{1}{2} + \frac{1}{2}$	
	Squaring on both sides of first equation	1/2	
	We get $sin\theta cos\theta = \frac{1}{2}$		1
	Simplifying $tan\theta + cot\theta$		1/2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Simplifying tullo + colo	
	we get $\frac{1}{\sin\theta \cos\theta} = \frac{1}{1/2} = 2$		
27	Quadratic formula Substitution		1/2
			1
	Simplification		1
	x = a - 2 or x = -(a + 3)		1/2
	OR		
	Let two parts be x and $27 - x$.		1/2
	Framing the equation Simplifying and getting equation $x^2 - 27x + 180 = 0$		1/2
	Solving and getting 12 and 15		1
			1
28	Figure		1/2
	Given		, 2
	To prove		1/2
	proof		
29	$\Delta APB \sim \Delta DPC$ [AA similarity	Figure	2
	$\frac{AP}{DP} = \frac{BP}{PC}$	Given & To prove	1/2
	$\overline{DP} = \overline{PC}$	Proof	1
	$AP \times PC = BP \times DP$	Conclusion	1/2
	A D		
	P		
	В		
30	Assumption statement (Method of co	ntradiction)	1/2
	Proof		2
	Conclusion statement		1/2
31	DC		1
	(1, 2) (4, b)		
	P /		
	A B (-2, 1) (a, 0)		
	Mid point of AC = Mid point of BD		1/2
	1 F	I	

	Calculation	1
	a= 1 & b=1	
		1/2
32	$(i)\frac{2}{5}$	2
	(ii) Proof	3
33	Figure	11/2
	Given	
	To find	1/2
2.4	Solution(working) r= 2 cm	3
34	In $\triangle PAB$, $h = \sqrt{3} x - (i)$ In $\triangle PCD$, $h = \frac{80-x}{\sqrt{3}} - (ii)$	1 1 1
		1/2
	Therefore, $x = 20$	11/2
	Therefore $h = 20\sqrt{3}$)m and distances 20m & 60m	172
	OR	
	m E 30° D 8 m	1
	A x m C	1
	In $\triangle ABC$, $x = h - (i)$	1
	In $\triangle BDE$, $x = \sqrt{3}(h-8) - (ii)$	11/2
	Therefore, $h = 12 + 4\sqrt{3}$	1
	Therefore Height and Distance = $(12 + 4\sqrt{3})m$	1/2

Table for first Equation	
Table for first Equation	1
Table for first Equation	1
$x + 2y = 5$ $(1, 2)$ $(3, 1)$ $(5, 0)$ $-5 - 4 - 3 \cdot 2 - 1$ -1 -2 Thus, the lines meet X-axis at (5, 0) and (-2, 0) respectively.	2
OR	
Let the ten's and unit digit be y and x respectively.	1/2
So, the number is $10y + x$.	1/2
The number, when its digits are reversed, becomes $10x + y$.	
So,7(10y + x) = 4(10x + y)	1
So,70y + 7x = 40x + 4y	
So, 70y - 4y = 40x - 7x	
So, 2y = x(i)	1
and x - y = 3(ii)	1/2
From (i) and (ii), we get $y = 3$ and $x = 6$	1
Hence, the number is 36.	1/2
SET- B	
21 AD AE	1
$\frac{1}{DB} = \frac{1}{EC}$	
DE BC	1/2
$\Rightarrow \angle ADE = \angle ABC = 48^{\circ}$	1/2
AD _ AE	1/2
$\frac{1}{DB} = \frac{1}{EC}$	
x x+3	
$ \qquad \qquad x+1 \qquad x+5$	1/2
Simplification	
x=3	1/2
	1/2
22 Formula	1/2
Substitution	1
Answer: $x^2 - 11x + 24$	1/2
OR	
Both are zeros	1+1

23	1 k		1
23	$\alpha \times \frac{1}{\alpha} = \frac{\kappa}{3}$		1/2
	Simplification		1/2
	\Rightarrow k = 3		
24	Formula		1/2
	Substitution & Calculation		1
	Answer: 77 cm ²		1/2
25	Formula		1/2
	Substitution		1/2
	Calculation		1
	Answer: 181		1
26	Figure		1/2
	Given		, -
	To prove		1/2
	proof		2
27	$\Delta APB \sim \Delta DPC$ [AA similarity	Figure	1
	$\frac{AP}{DP} = \frac{BP}{PC}$	Given & To prove	1/2
		Proof	1
	$AP \times PC = BP \times DP$	Conclusion	1/2
	Å Å		
	P		
	В		
28	A + B = 45		1
	A - B = 30		1
	A = 37.5 & B = 7.5 Squaring on both sides of first equation. We get $sin\theta cos\theta = \frac{1}{2}$		$\frac{1}{2} + \frac{1}{2}$
			1/2
			1
	Simplifying $tan\theta + cot\theta$		1/2
	we get $\frac{1}{\sin\theta \cos\theta} = \frac{1}{1/2} = 2$		1
20	n a	1	
29	29 (1, 2) (4, b)		
	P		
	A B (-2, 1) (a, 0)	1/2	
	Mid point of $AC = Mid$ point of BD		1
	Calculation		1
	a= 1 & b=1		1/2
30	Assumption statement (Method of contradiction)		1/2
	Proof		2

	Conclusion statement	1/2
31	Quadratic formula Substitution Simplification $x = a - 2 \text{ or } x = -(a + 3)$ OR Let two parts be x and $27 - x$. Framing the equation Simplifying and getting equation $x^2 - 27x + 180 = 0$ Solving and getting 12 and 15	1/2 1 1 1/2 1/2 1/2 1
32	In $\triangle ABC$, $x = h - (i)$ In $\triangle BDE$, $x = \sqrt{3}(h - 8) - (ii)$ Therefore, $h = 12 + 4\sqrt{3}$ Therefore Height and Distance = $(12 + 4\sqrt{3})m$ OR B S D h $\triangle PAB$, $h = \sqrt{3}x - (i)$ In $\triangle PCD$, $h = \frac{80 - x}{\sqrt{3}} - (ii)$	1 1 1 1 1 1 1 1 1 1 1 1 1 1

	Therefore, $x = 20$	1/2
	Therefore $h = 20\sqrt{3} m$ and distances $20m \& 60m$	1½
33	Table for first Equation Table for first Equation	1
	Tuble for first Equation	1
	x + 2y = 5 $x + 2y = 5$ $(1, 2)$ $(1, 2)$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
	-2 +	
	Thus, the lines meet X-axis at $(5, 0)$ and $(-2, 0)$ respectively. OR	
	Let the ten's and unit digit be y and x respectively.	1/2
	So, the number is $10y + x$.	1/2
	The number, when its digits are reversed, becomes $10x + y$.	, -
	So, 7(10y + x) = 4(10x + y)	1
	So, 70y + 7x = 40x + 4y	
	So, 70y - 4y = 40x - 7x	
	$So, 2y = x \dots (i)$	1
	and $x - y = 3 \dots (ii)$	1/2
	From (i) and (ii), we get $y = 3$ and $x = 6$	1
	Hence, the number is 36.	1/2
34	Figure	1½
	Given	
	To find	1/2
25	Solution(working) (r=1 cm)	3
35	(i) Sec $A = \frac{1}{\sqrt{1-\sin^2 A}}$, $Tan A = \frac{\sin A}{\sqrt{1-\sin^2 A}}$	1+1
	(ii) Proof	3